
N89-10083

J

A Natural Language Query System for

Hubble Space Telescope Proposal Selection

Thomas Hornick 1

William Cohen 1

and

Glenn Miller 1

Astronomy Programs, Computer Sciences Corporation

Space Telescope Science Institute 2
3700 San Martin Drive

Baltimore, MD 21218

/' c/,

7
_1. .z

r ::i j/
\ /i _:

Abstract

The proposal selection process for the Hubble Space Telescope is assisted by a robust and

easy to use query program (TACOS). The system parses an "English subset" language

sentence regardless of the order of the keyword phrases, allowing the user a greater flexibility

than a standard command query language. Capabilities for macro and procedure definition

are also integrated. The system was designed for flexibility in both use and maintenance.

In addition, TACOS can be applied to any knowledge domain that can be expressed in

terms of a single relation. The system was implemented mostly in Common LISP. The

TACOS design is described in detail in this paper, with particular attention given to the

implementation methods of sentence processing.

lStaff Member of the Space Telescope Science Institute

2Operated by the Association of Universities for Research in Astronomy for the National Aeronautics and

Space Administration

1 Introduction

The Hubble Space Telescope (HST) will be launched aboard a space shuttle into low Earth

orbit where it will function as a remotely controlled observatory for the next 15 years.

Astronomers wishing to use HST submit observing proposals to the Space Telescope Science

Institute (STScI). Due to the unprecedented capabilities of HST, a high oversubscription

rate is anticipated; 1000-2000 proposals will be submitted each year, while only about

200-300 can be granted observing time. The evaluation of proposals will be accomplished

via a peer-review process: An external scientific review committee (the Time Allocation

Committee or TAC) advises the Director of the STScI in the selection of the HST observing

program [1]. Although the scientific merit of a proposal is of prime importance, the selection

process must take into account various limited resources such as unocculted viewing time,
power, and communications links.

Due to the complexity and sizeof the proposal selectionprocess, itwas clear that software

support was essentialto assistin tracking proposal evaluation criteria.The Time Alloca-

tion Committee Operations Support (TACOS) system was developed to meet the following
requirements:

Flexibility:Although the basic procedures of the selectionprocess are fixed,several

detailed aspects are either uncertain or subject to change. Additionally, itwas rec-

ognized that the firstround of proposal selectionwould undoubtedly lead to several

adjustment to the selectionprocedures. Therefore a prime consideration in the design

of TACOS was to create a very flexiblesystem in terms of the input data, query
language and presentation of the output.

Natural language interface: As the TAC members can devote little time for training in

the use of the system, an easy to learn interface that allowed queries to be expressed

in an English-like form was desirable. Tolerance to input errors and on-line help was

also important. Available database query languages had complex and rigid syntax
which require a significant amount of formal user training.

Several features of TACOS are worthy of note:

¢ Use of a bottom-up, shiftreduce parser, rather than the more popular Augmented

Transition Network (ATN). In the adopted approach, the grammar ismaintained as

data to the parser,whereas the grammar isembodied in the code of an ATN.

* Flexibility was not only incorporated into reporting, but also into the maintenance of

the the system itself. Easy access to the initialization files allow the following to be
modified if needed:

- The TACOS database values and fields may be modified slightly or replaced

completely, as long as the database has been generated in the proper input

format. In fact, the database can be replaced by a new data and fields related to

a completely different subject, which allows TACOS to be utilized in an unlimited
number of domains.

- Changes to any of the field names or the security level of a field made be made

within one initialization file.

- Keywords may be added, deleted, or renamed by making the proper changes to

the lexicon initialization file.

- Grammar rules may be added, deleted, or modified by making the proper changes

to the grammar initialization file.

- All keywords and phrases may be customized via macro definitions to accomodate

the user's needs by either a initialization file or interactively by using the _define _

phrase. The customization feature includes defining procedures, in which a series

of commands may be executed with one predefined macro.

• The system was implemented in VAXLISP, a version of the popular Common LISP.

Source code of the system may easily be ported to other hardware with little modifi-

cation.

The first section of this paper provides an overview to the TACOS system. Sections 3-6 con-

tain the details on the system design, featuring an in-depth look at the major components.

The last section gives the conclusions of the paper.

2 Overview

The TACOS database consists of the all proposals being considered for selection. For

each proposal, the database contains information relevant to selection such as Proposal ID,

Principal Investigator information, total exposure time, dark time, etc. Each field can have

three possible values:

• original - value input to TACOS; the original value is maintained to allow comparison

to the limited value.

• corrected - In the event that an original value is in error, a TACOS user can fill the

corrected slot.

• limited - The selection process may allow a proposal more or less of some quantity

than was requested. This is kept in the limited slot.

The TACOS system will run interactively during the selection meetings (several sessions

should be meeting simultaneously). Committee members have copies of each proposal and

summary reports on criteria essential for selection, e.g. viewing time, number of targets,

etc. During the deliberation process, the committee produces a ranked llst of proposals and

may also set limitations on resources used by a proposal. The TACOS system keeps track

of these resources and produces a variety of repots from this information. A few examples

will illustrate several features of TACOS.

define procedure "adjust limits" as

define "scale" as

"limited primary time / original primary time N

define "resources" as

"parallel time to scale*parallel time,

parallel time used to scale*parallel time used,

parallel time made to scale*parallel time made.

time on target to scale*time on target.

data volume to scale*data volume,

number of uplinks to scale*number of uplinks,

scheduling difficulty to scale*scheduling difficulty"

limit resources

end procedure

Simply inputting the phrase "adjust limits" implements the procedure and sets the new
limits.

To provide immediate feedback to the members of the meetings, requests can be made to

display or print relevant data on the proposals. For example:

Tacos> display resources with primary time greater than 20
ton't>

Tacos> output resources with primary time greater than 20 using "printer"
con't>

The abilityto sort all proposals on fieldvalues isespeciallyusefullwhen reviewers require
a limitto be placed on a particular resource.

Tacos> display resources by largest primary time for all proposals
ton't>

Due to the limited availability of HST resources, the committee may recommend the alloca-

tion of resources by a panel grade. If resources are allocated on this basis, committee would

need to view all proposals in order of highest to lowest recommendation. They would also

require a cumulative total of resource allocation to be shown according to the rank order,
to allow them to determine when all resources have been allocated.

Tacos> display cumulative primary time by panel rank
ton't>

TACOS is written mostly in VAX LISP, with some support routines written in VAX/VMS

Digital Command Language (DCL), and editing and display capabilities provided using
VAX/VMS Text Processing Utility (TPU).

3 Design

This section describes the high level design of the TACOS system. Figure 1 shows the

architecture of the system.

The underlying structure of the TACOS database is rather complex, featuring a objset, a

set of objects. Each objset contains a sorted llst of the elements it contains and a hash

table mapping the name of an element to the element itself. Each element is a hash table

mapping field names to fields. These fields are actually property lists that maintain three

values: original, corrected and limited. A special sort of the objset is maintained and is

known as the master set.

Each sentence is processed in the following way. First, read-input reads the sentence from

the terminal (or some other source.) Read-lnput reads until it reaches a blank line; it

then concatenates the lines it has read into a string and hands this to scan. Scan then

converts this string into a list of tokens: each token at this point is either a LISP atom,

a number, a string, or a LISP list composed of numbers and/or strings. This token list is

then checked for macros by expand. If any macros are present, then they are expanded

in line. Finally, each token in the token list is classified by the classify module. Classify

replaces each token with a simple parse tree.

Next, the expanded and classified token list is passed to the parser, where the llst of trees

is parsed into a parse tree. This tree is then in turn converted into a function which uses a

restricted subset of LISP by the codegen module.

This function is then passed to the backend module. The first thing the backend does is to

apply the function, via the codeeval module, to the context data structure, changing one

or more fields of the context structure. The context structure is used for communication

between frontend of TACOS and the backend. After various fields in the context structure

have been set, the backend module examines the structure and uses the information in it

to do what the user requested with his original command.

The context structure contains many fields; below is a list of the more important ones:

• The verb indicator which indicates what verb was used.

• The consider set,a set of proposals.

• The change set, a set of change values. A change value describes how some field of a

proposal should be changed, as determined by the proposal selection committee.

• The display set, a set of values to display. Display values are structures that describe

a value to display; they have these fields:

- a tag to be used as a column heading;

- a column width;

- a display function which indicates what value to display, (This function is a LISP

data structure which is actually a function of a proposal);

- a statistical function, which indicates how to display the value - (e.g., "total" or

_average').

@

I dalabase

read-input 1

1
L,_,°I

1

@

I_''°'_I
!

Lo.r,. -F' II
L_°°','° I

1
I backend

I
@

L,om,,,,rI I codeeval I

Figure I: TACOS System

• * The order act, which indicates how to sort the list of proposals. Each order value is a

structure with these fields:

- an order/unction which is just like the display function above, but is used dif-

ferently; and

- an indicator which indicates ascending or descending order, with default as de-

scending.

• The define-set, which always contains a single pair of strings or is empty.

Other slots in the context structure are used internally, or for communicating specialized

pieces of information to the backend module: for instance, there is a special slot for telling

the backend module what procedure to call when the verb is call-procedure.

Most slotsin the context structure are static;ifcodeevaling a sentence doesn't change

a slot,then the old value remains. TACOS will use these slot values as default values in

the event that any of the set fieldspreviously described are not specifiedin a single input

sentence.

After the readinput-...-codeeval cycle iscomplete, most of the hard work isover. The

set of proposals to operate on and other sets (such as sets of fieldsto display) have allbeen

determined at this point. Backend now executes the sentence; this is nothing more than

running the verb through a big case statement (actually acond clause) and executing the

appropriate procedure. Most of these procedures are, ifnot trivial,at leaststraightforward.

Backend recognizes the following verbs:

• display - create a tabular display.

• edit - write the values to be modified into a table, invoke an editor so they can be

changed, and then read the table back in.

• change, limit, correct - give a new set of values to some fields. The new values

should be specified in the sentence, e.g., achange requested primary time to 3 hours".

Change changes the original value of a field; limit changes the limited value; and

correct changes the corrected value of a field.

• define - define a macro.

• create partition - write a table representing a set of proposals (more generally, a set

of objects) into a file.

• load partition - reads in a set of proposals from a given file. Appropriate error messages

will be displayed if the set is disiointed from the current set of proposals, to prevent

the database structure from being corrupted.

• define procedure, end procedure - these commands delimit a procedure definition.

• call procedure - call a predefined procedure

• help - call a help utility.

• hint - give a hint about the last error message.

7

• output, output using format - these are used to output scalar values (like "total dark-

time"). The _using format" qualifier is meant to be used only in predefined procedures
and is for formatted output.

• exit - quit the system.

4 Sentence Understanding - the TACOS Frontend

This section describes in detailthe modules that comprise the TACOS frontend - i.e._the

part ofTACOS dedicated to mapping the sentence typed inby the user into a LISP function

that modifies the context structure. The cycle isas follows:

I. the read-lnput function reads a stream ofcharacters from the terminal and produces
a string;

2. the scan function turns that string into a listof tokens, terminated with a special

end-of-sentence marker;

3. the expand function expands macros in that list;

4. the classify function maps these tokens to a list of parse trees;

5. the parse function parses this input, producing one parse tree for the non-terminal

symbol _sentence';

6. the codegen function transforms this parse tree into a LISP function

r

4.1 Read-lnput

Read-input is responsible for reading a sentence from some input stream. Any lead-

ing blank lines are ignored, and a trailingblank llneindicates the end of sentence input.

The module operates in two modes, interactiveand non-interactive. In interactivemode,

a prompt is printed before each line is read: a primary prompt for the firstline,and a

secondary prompt for each linethereafter.In the example input sentence that was demon-

strated in Section 2, the default prompts were shown, where "Tacos> _ was the primary

prompt, with "con't> _ being displayed for each lineof sentence thereafter.

A blank linewas selectedover the more commonly used period forthe purpose ofterminating

input due mostly to our own experiences with natural language processors - ittook quite a

while for many people to get used to ending each sentence with a period.

4.2 Scan

The Ican module performs lexicalanalysisof a string,returning a llstof tokens. The tokens

are either symbols, strings(corresponding to quoted stringsin the input),numbers of some

standard type, or listsof numbers and/or strings. Scan issueswarnings about ill-formed

input (non-terminated quoted strings, non-terminated lists, illegal characters) but will never

abort with an error.

Lexical analysis was done using a pseudo-readtable implemented with a hash table. This

method was selected over a customized LISP reacltable for two reasons; a pseudo-readtable

has demonstrated a faster execution time and a customized LISP readtable is prone to

changing output in generally unpredictable ways when modified.

All of the macro functions used by the reader are implemented at the user level.This was

necessary for a variety of specificreasons, allof which are a manifestation of the problem

that the standard LISP read function is not robust, and itwas easy to draw read into a

LISP error. As an example, ifa control character isencountered when reading a symbol

name, then LISP willsignalan error. This isone of the reasons that we needed to map all

alphabetic characters to a symbol-parsing routine.

4.3 Expand

Expand performs macro expansion on a list of tokens, in which any macros are immediately

expanded in line. Implementation of this module is a different problem from parsing for

one big reason: a bottom-up parser takes the shortest production it can, and the macro

expander takes the longest. Cycles are avoided in this way: when defining X as Y, actually

define X as ezpand(Y). (Then when you perform the macro expansion by replacing X with

ezpand(Y), there is no need to also expand the replacement string, ezpand(Y), since it has

already been expanded. In other words, macros are always defined relative to previous

macro definitions.)

The expand module uses a list of macro structures to do its work. Each macro contains

two parts:

• The target. This is a list of tokens - when this list is encountered in the token list,

then it can be superseded by the replacement.

• The replacement. This is another list of tokens, possibly empty.

Expand starts at the beginning of the token list, and begins matching targets to it, starting

with the longest ones. When it finds a match, then the part of the sentence corresponding

to the target is stripped off and superseded with the replacement, which is a parse tree, and

expand continues expanding the remainder of the token list. If no match is found, then

expand continues by trying to match macros that start at the second token, then the third,

etc. and so on.

Expand works in time O(n)O(m) where n is the length of the sentence and m is the number

of macros. There are more efficient methods to do this expansion, but they call for more

complex ways of programming. The method implemented is more than sufficient for the

macros we were concerned with expanding, since the problem is similar to regular expression

matching.

4.4 Classify

Classify manipulates a list of tokens by mapping them to a list of simple parse trees.

Classify issues a warning for each unknown symbol. If there are any unknown symbols in

the sentence, then it aborts with an error message after the entire sentence is classified.

Normally, this classification process is carried out by a tokenizer, which also performs lexical

analysis duties. The reasons for splitting ¢lassLfy off into a different module are:

* Itmakes the scan function more generally useful.Itisused, for instance, in the table
reader.

• It makes the expand function both generally useful (although not, as yet, generally

used) and easierto write.

For implementation reasons, it's nice for the parser to deal with nothing except parse trees.

Thus, classify outputs a list of "primitive _ parse trees - trees without any subtrees. The

_type" field of the generated tree indicates the part-of-speech/token-type of each token, and

the _munger" field is a function that, when evaluated by codegen, will generate LISP code

for the tree (see Section 4.6 for details.) These are obtained via lookup in the lexicon.

The lexicon isa hash table that maps symbols to the part-of-speech of that symbol, and

parts-of-speech to the function needed by codegen.

4.5 Parse

k -

Parse takes as input a listof _primitive parse trees"and outputs a singleparse tree. The

parser isdata-driven, controlled by a set of grammar rulesread in from a file.

The parser module is a bottom-up, shift-reduce parser; the end product of this method

of parsing is a stack of parse trees. Each tree represents some recognized grammatical

constituent (perhaps only a token.) The parse is deemed succesful if and only if the stack,

after parsing is complete, contains a single parse tree representing a sentence constituent

(sentence is thus hard-wired in as the distinguished symbol of the grammar.) If the parse is

not successful, an error message is generated which is basically a dump of the parse stack;
for example,

Error: I don't understand the sentence: If <comparlson-llst> then <sentence>

The heuristics for generating hints are described below.

The most usual way of parsing natural language is with an ATN parser - i.e.,top-down

with backup. For severalreasons, have departed from thisconventional wisdom and used a

bottom-up parser without backup.

First, there is a maintainability issue. ATN grammars are programs, not data, and as

programs they are less readable than most. Also, the ATN representation for a grammar

doesn't look anything like the BNF for it, which is what most competent grammar-designers

would think in. Writing ATN grammars requires an intimate understanding of how ATNs

10

work,whichis not a common piece of knowledge to have. In contrast, a shift-reduce parser

runs off reasonably comprehensible data.

Second, there is an efficiency issue. An ATN interpreter is essentially a branch-and-bound

search program, looking for possible parses. This can get expensive when you have certain

types of conjunctions. It gives one some extra power and flexibility, but at a cost.

Finally, top-down parsing with backup gives, at least in our experience, no useful informa-

tion when a parse fails about why it failed or how to fix the problem. In our opinion, this

is a grievous shortcoming. The stack resulting from a bottom-up parse contains a great

deal of information about the sentence and why it didn't parse. Although not all of the

information provided is used, this fact did influence the decision on which technique to

implement.

Bottom-up parsing is a poor technique to integrate with backup and search. To compensate

for the lack of backup, two techniques are used. First, any grammar rule can look ahead

an arbitrary distance into the input stream. Second, the code generated for a parse tree

can depend on the context in which it appears. For instance, the parse tree for a field may

generate the name of the field in one context, and a function to access the field in another

context.

This brings us to another decision: the close integration of the parser with the codegen

module. Every grammar rule contains an associated function that will produce LISP code

that corresponds to the parse tree that was input for that rule. Attaching this semantic

• information to the grammar has obvious advantage; it eliminates the necessity for a file

parallel to the grammar file that would be used by the code generator.

The following heuristics are used to provide hints after an unsuccessful parse:

• First, the parser looks at the firsttoken in the token llst.If this is a verb or the

keyword that marks a major clause,then a summary of the syntax for that clause is

given.

• Ifthisfails,then a listof allowable clauses,with a briefdescription of each, isgiven.

A specialfreelistiskept of parse tree structures,rather than relyingon the LISP garbage

collectionroutines, thus increasing the speed of the parser by a large factor.The code for

the parser itselfisperhaps a littleopaque; the subroutine structure was carefullychosen for

efficiencyrather than for simplicity.

Some future enhancements to make the parser module more effectivewould include:

• Some consistency checks on the grammar -at leastenough to catch spellingmistakes,

etc.

• Although this parser handles short sentences effectively,itprobably would be much

less effectiveon a program-sized parsing problem. To increase performance might

require some sort of indexing scheme; for instance, using a modified digitalsearch

tree at a singlelevelmight increase parsing speed dramatically.

• Eventually replace the parser module with a LR(k) (right parser works deterrninis-

tically,ifallowed to look k input symbols ahead at each step) parser-generator llke

YACC. These types of parsers operate in strictlylinearspeed.

II

4.6 Codegen

Codegen takes as input a singleparse tree,and generates a LISP structure that corresponds
to that tree.

The munger functions used by codegen are modeled after YACC actions. The same special

variables $1, $2, ... are used to represent the code generated by the first, second, ... subtrees

of the tree being generated. In addition, these variables have been added:

• "1, *2, ... represent the first, second, ... subtrees themselves.

• *tree is the tree being codegenned.

• Ssubtrees is a list containing $1, $2, ...

• *subtrees is a list containing "1, "2, ...

• *env is the environment (see below).

• *len is the number of subtrees.

All of these are used somewhere in the TACOS grammar. The YACC pseudo-variable "85"

isn'tneeded - LISP conventions for returned values are used instead.

The code generation process may be best explained with an example. Consider thisgrammar
rule:

(expr --> expr '+ addend

YIELDING '(+ ,$I ,$2))

When this production isused, a parse tree T isproduced; attached to T willbe a pointer

to a function somewhat likethis:

(lambda (*subtrees *env *tree)

(let (($1 <code generated for first subtree>)

($2 ...))

'(+ ,$1 ,$2)))

When (codegen 11)iscalled,this function will be called with the appropriate parameters.

To find values for 81 and $2, as required by the let special form, codegen isessentially

called recursively(actually,a lower-levelroutine iscalled.)The body of the let statement

isthen executed, producing LISP code to evaluate the expr.

Code generation is thus done top-down. This is necessary for the following important

reason. Often, the meaning of a non-terminal symbol (e.g., the code that must be produced

for it) depends on the context on which the symbol appears. To take an example from the

TACOS grammar,

<set-list> and <set-list>

12

isnormallyinterpreted as a union of two sets. However, in this sentence

all proposals in <set-list> and <set-list>

the conjunction must be interpreted as an intersection.

The parser usually has no way of knowing, when itparses

<ss_-lis_> e.vtd <se_-lis_>

what context the conjunction will eventually appear in. Sensitivityto context is then left

up to the codegen module. Codegen routines can determine what context they are used

in by checking the environment for signalspassed by some higher-levelfunction.

The environment isimplemented as an association list.A routine can pans a signal to the

_-th subtree with the send macro; instead of using $n, it uses the macro call (send *n

'slgna]). The signalcan be received by the calledfunction with the macro (recelve), which

always returns the most recent signal leftfor that function.

5 The Context Structure

The context structure isa specialstructure that contains the _content" of a sentence. The

context structure can be thought of as a frame representing a sentence. The slotsin the

fraxneare populated by evaluating the function that iscreated by the codegen module.

Part of what the context structure contains are a set ofdefaultvalues for what set of objects

to operate on, what functions to display,and so on. These values are permanent; they are

not changed unlessthey are explicitlyoverwritten by a command. Permanent context values

include:

• The consider set, the last of proposals (more generally, objects) specified.

• The display set, which describes the columns to display in a table.

• The change set, which describes a list of fields to modify.

• The order act, which describes a list of functions to order by.

• The last repeatable verb used in a sentence. A TACOS command need not contain a

verb; it may instead specify a new set of proposals, for instance. In thls case, the last

repeatable verb is used to complete the ellipsis. Repeatable verbs are display, edit,

and output.

Other slotsof the context structure hold temporary values. The values are llkepermanent

values, but the grammar requires that a command populate them before they are used.

They are in context not to ensure that they are preserved from one command to another,

but as a convenience; the context structure isthe only mechanism for communication with

the backend module.

These communication slotsare:

13

• The partition slot, which holds the file name of a partition to load or create.

• The called-procedureslot, which holds the number of the procedure to call.

• The define 8st, a set of values to define, or to retrieve the definitions of. Currently, the

grammar only allows you to put a single value in this set, but software does support
processing a llst of define values.

Another type of slot is the temporary slot. Temporary slots need not be populated by the

grammar, but are not permanent because the last value specified is not likely to be re-used.

Temporary slots are reset to a default value before the function produced by codegen is
evaluated. Temporary slots include:

• The verb indicator, which defaults to the last repeatable verb.

• The display command, a VMS command to display a table. This defaults to a com-

mand that invokes the TACOS examiner, which allows a user to view fields they have
specified in a full screen format.

• The field selector, which defaults to nll (indicating to prompt the user for a value.)

This determines what selector value of fields will be changed in an edit command.

• The format string, which indicates the format of an output statement. Its default

value is nil, which means to use a default output reporting format.

A finaltype of slot in the context structure isthe internal slot. Internal slotsare used

mostly for procedure definitionand conditional execution.

Each of these types of slot is, of course, treated differently by the software. Together,

the slots completely describe a sentence, and provide a clean and well-organized interface
between the TACOS frontend and the TACOS backend.

6 Command Execution - the TACOS Backend

This section describes the backend of the TACOS on-line system. The backend takes as

input a function produced by codegen, and then uses that function to modify the context

structure. It then looks up, from the verb indicator in the context structure, what low-

level routine to use to execute the user's command. Finally, that routine is executed, and
backend returns.

The value that is returned by backend is one of:

• 't, to indicate normal execution

• 'exit to indicate that an exit verb was processed and that the session should termi-
nate.

14

Backend does a considerable amount of consistency checking of the context structure. If

a check fails,then backend throws an appropriate error message.

Backend uses a number of other modules to do itswork. Some of these modules are quite

complex in their own right.These modules are:

• Codeeval, which evaluates the code produced by codegen and thus makes the neces-

sary changes in the context structure.

• The database module, which handles access of the TACOS database.

• The reader and formatter, which handle input of tables and output of tables,re-

spectively.

• The procedure,, module, which handles storage and retrievalof predefined proce-

dures.

• The logging module, which maintains a log of changes to the database.

• The fleld_prot module, which provides some security to the database in the sense

that itrestrictswrite access to parts of certain fields.

• The system module, which makes callson the operating system.

• The TACOS examiner (a fullscreen viewing facility)and the TACOS editor (provides

fullscreen editing capabilities).

7 Conclusion

The TACOS system has been throughly exercised ina seriesof mock TAC meetings and the

response from the users has been very favorable. The power and flexibilityof the queries

was demonstrated during these trials.Another feature that drew favorable comments from

the users was the abilityto customize the dialectvia macros and predefined definitions.Up

to six simultaneous TACOS systems were run during the trialson a VAX 8600, along with

other STScl users. Performance was acceptable. Increased speed for initializingthe system

was obtained by increasing the priorityof the TACOS process, yet thisdid not significantly

degrade performance for non-TACOS users. We are planning to move the initialization

procedures into a suspended version of the TACOS system, which will insure even greater

time savings.

We have described how the TACOS system supports the HST proposal selectionprocess in

severalways:

• A flexible,easy-to-use,English-llkecommand language

• A reliable on-line help facility

• A flexible grammar with free formatting of sentence input

• A quick and helpful diagnosis of erroneous input

15

The design of TACOS includes several innovative technologies which are useful in the cre-
ation of a natural command language, including:

• Using a bottom-up, shift reduce parser for sentence understanding.

• Modular development of functions to allow maintenance of all grammar rules, macro

definitions, database field security, and keyword phrases to be made with requiring
recompilation.

• Implementation of the system in a highly portable language.

The result of our efforts is a easy-to use, extensible command language system that is
applicable to many other problems.

16

References

[1] S0-05 Proposal Solicitation and Review, Volume 1, STScI 85051A, Final, August 1985

[2] Aho, A. V. and Ullman, J. D., Principles of Compiler Design, Addlson-Wesley Pub-

lishing Company, 1977

[3] Winograd, T., Language is a Cognitive Process, Addison-Wesley Publishing Company,
1983

17

